A Review: RFM Approach on Different Data Mining Techniques

نویسندگان

  • Chandni Naik
  • Ankit Kharwar
چکیده

Data mining is a well-known technique, which can be used to extract hidden information about customers’ behaviors. It is used to improve the customer relationship management processes by various Organizations. Previous researches in constraint based pattern mining emphasis only on the concept of frequency.But the changes in the environment may occur frequently, so the frequently occuring pattern in past may not happen again in the future.To deal with these issues, in this paper the concept of recency, frequency, and monetary is consider. Based on the RFM value, customers can be clustered into different groups and the group information is very useful in market decision making.In this paper we have explained about sequential pattern mining using RFM, clustering using RFM, classification using RFM and association rule mining using RFM for customer segmentation, customer behavior prediction and product recommendation. Keywords-Association rule mining, Classification, Clustering, RFM, Sequential pattern mining.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Data Mining Using RFM Analysis

RFM stands for Recency, Frequency and Monetary value. RFM analysis is a marketing technique used for analyzing customer behavior such as how recently a customer has purchased (recency), how often the customer purchases (frequency), and how much the customer spends (monetary). It is a useful method to improve customer segmentation by dividing customers into various groups for future personalizat...

متن کامل

Credit scoring in banks and financial institutions via data mining techniques: A literature review

This paper presents a comprehensive review of the works done, during the 2000–2012, in the application of data mining techniques in Credit scoring. Yet there isn’t any literature in the field of data mining applications in credit scoring. Using a novel research approach, this paper investigates academic and systematic literature review and includes all of the journals in the Science direct onli...

متن کامل

Integrating AHP and data mining for product recommendation based on customer lifetime value

Product recommendation is a business activity that is critical in attracting customers. Accordingly, improving the quality of a recommendation to fulfill customers’ needs is important in fiercely competitive environments. Although various recommender systems have been proposed, few have addressed the lifetime value of a customer to a firm. Generally, customer lifetime value (CLV) is evaluated i...

متن کامل

A Study to Improve the Response in Email Campaigning by Comparing Data Mining Segmentation Approaches in Aditi Technologies

Email marketing is increasingly recognized as an effective Internet marketing tool. In this study, a questionnaire is constructed and distributed to a sample of 146 prospects of Aditi Technologies to find the factors associated with higher response rates. The collected data is analyzed using Factor Analysis and the 11 factors, From Line, Subject Line, Personalization of the subject line, Timing...

متن کامل

Customer behavior mining based on RFM model to improve the customer relationship management

Companies’ managers are very enthusiastic to extract the hidden and valuable knowledge from their organization data. Data mining is a new and well-known technique, which can be implemented on customers data and discover the hidden knowledge and information from customers' behaviors. Organizations use data mining to improve their customer relationship management processes. In this paper R, F, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013